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NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS 
BY POWER SERIES EXPANSIONS, 

ILLUSTRATED BY PHYSICAL EXAMPLES 

Erwin Fehlberg 

SUMMARY 

Some general situations a r e  discussed, where a power series expansion (with 
coefficients obtained by recurrence formulas) has advantages over other integration 
procedure s. 

Two examples are presented: the restricted problem of three bodies, and the 
motion of an electron in the field of a magnetic dipole. In these examples, the power 
ser ies  expansion requires only about 15 to 20 per  cent of the computer time required 
by the Runge-Kutta-Nystrom method, both methods yielding results of the same accuracy. 

SECTION I. GENERAL REMARKS 

1. Either a Runge-Kutta method or  an interpolation procedure (Adams, Gauss, 
etc. ) is generally used for the numerical solution of ordinary differential equations. 
Both methods have disadvantages in certain situations, however. Runge-Kutta formulas 
are of rather low accuracy (truncation e r r o r s  proportional to h5 for the Kutta formulas 
generally used) . 
could be prohibitively small, resulting in excessive round-off e r r o r s  and inordinately 
long computation times. Interpolation formulas, on the other hand, can be of any desired 
order of accuracy with respect to the truncation e r ror .  Interpolation formulas a r e  well- 
suited for problems that can be integrated with a constant step size. But if the step size 
must be changed, reconstruction of the difference scheme, which is rather extensive for 
formulas of higher accuracy, is cumbersome. Thus our examples in I1 and 111, which 
require frequent changes in the step size,  could scarcely be integrated using an inter- 
polation formula. 

Runge-Kutta formulas therefore require integration step sizes that 

2. In such situations, numerical integration by power series expansions is prefer- 
able for  some types of differential equations. 
of f i rs t  order differential equations for the functions y (x) for p = I, 2 , .  . . , n. 
such a system can always be solved by a power series expansion, with coefficients com- 
puted by recurrence formulas, provided the system is of second degree, i. e. , that it has 
the form: 

For  simplicity, let us  consider a system 
Clearly, 

P 



o...n 

where yo E i ,  and A, and B 

assume that the power ser ies  expansions are sufficiently convergent for our purposes. 

can be polynomials of any degree in the independent 
variable x. Since we shall I? e concerned only with computational techniques, we shall 

3. Differential equations of the simple form ( i )  are generally not encountered 
in practice. But a given system can in many cases be transformed into a system of 
form ( I) through the introduction of suitable auxiliary functions, thus allowing solution 
by power ser ies  expansions (see I1 and I11 below). Indeed, since most of the common 
algebraic and transcendental functions satisfy differential equations of the simple form 
( i)  , a rather broad class of differential equations can be transformed into form (I) by 
suitable substitutions. 

4. Another question a r i ses ,  of course, as to how extensive the system will  be 
after it has been transformed into form (1) by such substitutions. Integration of differ- 
ential equations by power ser ies  expansion is recommended only if the equations can 
be transformed into form ( i )  by a small number of substitutions and, further, only if 
frequent changes in the integration step size a r e  anticipated. 

5.  Like interpolation methods and unlike Runge-Kutta methods, the power ser ies  .i 
method permits computation of the truncation e r r o r  along with the actual integration. 
This is fundamental to an automatic step size control. In the two examples that follow, 
we have made use of such an automatic step size control. These two examples, which 
involve systems of second order differential equations, were integrated both by power 
series methods and, for comparison, by the Runge-Kutta-Nystrom method. Using the 
power series expansion method, we generally went as far as the te rms  with hi6, unless 
the coefficients exceeded the capacity of the computer in the neighborhood of singular- 
ities. To compare our power ser ies  method with the Runge-Kutta-Nystrgm method 
(truncation e r r o r s  proportional to h5) , permissible tolerances of the truncation e r r o r s  
were  adjusted so that the first integrals of the equations of motion (known in both examples) 
produce e r r o r s  of approximately equal magnitude for both methods. 
our power ser ies  method is far more accurate than the Runge-Kutta-Nystrzm method, the 
step size will be much larger  for our method. As our examples show, this larger  step 
size can more than compensate for the considerably larger  number of operations per  
integration step. 

Consequently, since 
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The computation of these examples w a s  performed on an IBM 7090 computer in 
double precision (16 decimal places).  

SECTION II. RESTRICTED PROBLEM OF THREE BODIES 

The equations of motion ( in  a rotating coordinate system) are2 6. 

x - (1-p) 
2 3/2 

X + P  - 
dt [ (x+p) + y2] 3’2 [ ( x  -l+p )2 + y ] 

dx 
dt dt q = y - 2 - -  (1 - p )  

where p = the relative mass  of the Moon in the Earth-Moon system. 

The first integral of the equations of motion (the so-called Jacobi integral) is 

2 112 = Const. (3)  J =  !- [($r + (2) - x  2 - y 2 ] -  1 - p  
[ (x+p )2 + y2] 

I-1 
2 

2 - [ (x-1+pY + Y 1 

Auxiliary functions are 

r2 = ( X + p p  + y2, 5 2  = (x-i+p)2 + y2 

fL v =  3 ( 1 - P )  
r3 ’ S 

u =  

Introducing (4 )  into ( 2 )  transforms ( 2 )  into the following second degree system, 
which can be integrated directly by power ser ies  expansions: 

du d r  dv ds dt dt dt dt s2 = (x-it-p) + y2 r - + 3 ~ -  = 0, s - + 3v-= 0, r 2  = (x+p)2  + yZ, 

I .  The author is very much indebted to Mr .  Albert Hirsch, now of the General Electric 
Co. , Phoenix, Arizona, for  his extensive and untiring assistance in programming the 
examples. 

2. Cf. , for example, Siegel, C. L. , Vorlesungeniiber Himmelsmechanik (Berlin 1956), 
p. 105. 
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Let the power series expansion be 

v=o v=o 

V V 
u = u, (t-to) y v = vu (t-to) 

v=o v=o 

The first coefficients Xo, Xi and Yo, Yi are known at the beginning of the inte- 
gration step. The first coefficients Roy So, Uo, and Vo are then determined from 
(4) * 

Introducing ( 6 )  into (5 )  and comparing coefficients, we  obtain the following 
recurrence formulas for the succeeding coefficients: 

v=o v=o 

v=i V=i 
( n = i ,  2 ,  3 ,  ... ) 
\ 
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For n = I ,  the last sum must be omitted for the first four equations ( 7 ) .  

I t w o  t " 1  t " 1 . 5  t " 2  
0.468 * I O "  0.654 - I O - '  0. 590 - 0. 802 * I O "  I At At for for RKN PSE I 0.362 - I O m 3  0.835 0.669 0.815 . 

7. As  an  example of the restricted problem of three bodies, w e  have computed 
a periodic orbit of a particle that moves around both the Earth and Moon. 
values 

The initial 

t " 3  
0.205 
0.124 * 

) 
I (for p = - 82.45 

xo = I. 2, yo = 0 ,  (%)o = O' (dt)o %! = -1.049 

t " 4  
+O. 169 
-0.209 IO - ' '  

for this orbit are taken from a paper by R., R. Newton [I]. Among the initial values 
given in this paper, we  have selected those of the orbit coming closest to the Earth. 
Figure I shows this orbit (including a time scale).  Every fifth point computed by the 
power ser ies  method is marked. Clearly, numerical integration with a constant step 
size would have been impossible. 

t w 6  
+o. 265 . 
+O. 285 - I O - "  

Table I shows, for a number of values of t,  the step size At (determined auto- 
matically from the program) for the power ser ies  expansion (PSE) method and for the 
Runge-Kutta-Nystrbin (RKN) method. 

Table 2 shows, for a few values of t ,  the e r r o r s  6J of the Jacobi integral (with 
respect to i ts  initial value). 

Thus, with the same accuracy, it is possible to use  a s tep size for the power 
series method that is about 100 times as large as for the Runge-Kutta-Nystrbin method. 
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A little more than one full  orbital period was computed via both methods. Following 
a r e  the computer running times for t = 6. 25 (period 6.19)  : 

PSE: 
RKN 

1. 74 minutes (177 integration steps) 
9. 74 minutes (about 16,900 integration steps) 

For  the same accuracy, computation by the power ser ies  method takes only about ,- 

18 per  cent as long as by the Runge-Kutta-Nystrb" method. 

8. Numerical integration of the restricted problem of three bodies by power ser ies  
expansions has already been reported in astronomical literature [ 2,3].  However, the 
advantages of the power ser ies  method a r e  not fully apparent in these papers, since they 
concern problems of motion (e.  g. , periodic trajectories of the Trojan group in the Sun- 
Jupiter system) that can be integrated with a constant step size for the entire orbit. And 
indeed this is how these problems were actually integrated by the authors. But then 
the central difference formulas of Gauss, for example, could have been used just as 
effectively and, in our opinion, would have required considerably less  computer time. 

SECTION 111. MOTION.OF AN ELECTRON IN THE FIELD OF A MAGNETIC DIPOLE 

9. m e  equations of motion arei  

d2x 
ds2 - 

r5 - - 

2 
r5 dz - 

ds2 - 
dx 3yz - 
ds 

* - 3xz 
ds 

dz +3xz - 
ds 

The magnetic dipole is assumed to be at the origin; the axis of the dipole coincides with 
the z axis; s = the a r c  length of the electron path; and r = the distance of the electron 
from the origin. 

The first integrals of the equations of motion a r e  

A ds 

1. Cf. , for example, Stb'rmer, 

6 
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Auxiliary functions are 
2 2  a = 2 z 2 - x  - y ,  b = 3 y z ,  c = 3 x z  

Introducing (12) into (9)  yields the second order system 

d2x a & - b &  
q s =  ds ds  

dz 
d s 2 -  ds  ds  

d2 z 
ds  ds ds 

LEY- + C -  

q T =  b-  - C  

ski= d r  
5q ds r ds  

Power ser ies  expansion of the functions appearing in (12) and (13) 

v=o v=o 
- 
v=o 

V V U 

v=o v=o v=o 

V U 

v=o v=o 

I 

(14) 

yields the following recurrence formulas for the coefficients of these functions: 

n n n 
An = 2 Zvzn-v - 2 x x - yvyn-v 

\ 
V n-v 

v=o v=o v=o 

n ( n  = I, 2,  3, .. . )  

Bn = 3 yvzn-v (15) 
v=o 

n 
c n  = 3 xyzn-v 

V = o  
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v=o V=Q v=o 

The first coefficients Xo, Xi, Yo, Yi, Zo, and Zi are known at the beginning of the 
integration step. 
from (12) and the succeeding coefficients are obtained from (15). 
sum must be omitted from the last five equations of (I 5). 

The first coefficients A,, Bo, Coy Roy and Qo are then determined 
For n = I, the last 

10. Our example of the motion of an electron in the field of a magnetic dipole may 
have the following initial conditions: 

- xo - 0 . 7 ,  yo = 0, zo = 0, 

Figure 2 shows the projection of the electron path (including an s-scale) in the 
(x, y) -plane. Again, every fifth point computed by the power series method is marked. 
This projection gives a good indication of the true path, since the values for z change 
slowly and remain relatively small (within 20.25).  

Table 3 shows, for a number of values of s, the step size As,  which w a s  again 
determined automatically from the program. 
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TABLE 3 

_- 
.---!5.% 4 s 6- s- M 8 
-0.193 * IO- ' '  
-0. 286. -0. 439. -0.472 * I O - "  

-0. 354. -0. 766. IO-'' -0. 959. 
+ O .  259 * IO - ' '  -1-0. 399. I O - "  +O. 386 IO-'' 

-0. 366 * I O - "  -0. 401 * I O - "  

~ _. 

.- 

p?-E 
A s  for RKN 

s = I O  
-0. 399 * 1 OVii 
-0. 487 - IO-'' 

-0. 941 - 
+ O .  372 * IO-' '  

. s Z . 0  ] s m 2 - i - . - s a L - t  _ s m 6  1 s a 8  s X l 0  1 
0.121 0.220. I O - '  0.819. I O - 2  0.980' I O - '  0.289 0.386 
0.272. 10-~ 0.120.10-3 0 .394.10-~  0.416.10-~ 0 .837.10-~  0.193- 1 0 " ~  

- ._ _. 

Table 4 shows, for a number of values of s, the e r r o r s  61 and 6k of the first 
integrals (IO) and ( 11) , with respect to their initial values. 

. -~.. - 

___. .___ 

Blfor PSE 
61 for RKN 

6k for PSE 
6k for RKN 
.. -~ - 

- 

_ _  s = 2 L  
-0.159- I O - "  
-0. 147 * I O - "  

-0. 286 - 
+ O .  149 * I O - "  

_ _  

Thus, with about the same accuracy in the first integrals, the ratio of the step 
sizes in this example is even more favorable to the power ser ies  method. 

For  both methods, computation w a s  halted as soon as the electron moved a 
distance of two units from the magnetic dipole. 
were required: 

The following computer running times 

PSE: 3. 71 minutes (204 integration steps) 
RKN: 25. 70 minutes (about 37, 000 integration steps) 

Thus computation by the power ser ies  method in this example takes only about 
14 per  cent as long as by the Runge-Kutta-Nystrb" method. 
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